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Deformed Gaussian orthogonal ensemble and the statistical fluctuations
in the spectra of the quartic oscillator
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The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-
Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by
Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The
advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple
extension of the expression for the Dyson-Mehta statisticD3 are compared with those of a more popular one,
usually associated with the Berry-Robnik formalism.@S1063-651X~99!01201-5#

PACS number~s!: 05.45.Xt, 47.52.1j, 24.60.2k
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I. INTRODUCTION

Thanks to the pioneering work of Berry and Tabor@1# and
to the work of Bohigas, Giannoni, and Schmit@2#, it is nowa-
days largely accepted that regular systems show level fl
tuations of the Poissonian type while chaotic systems h
eigenvalue fluctuations like those of the matrix ensemble
Dyson. Particularly, in the case of the nearest-neighbor s
ing distribution~NND!, the Poissonian case reads

PPoi~s!5e2s ~1!

whereas the so-called Wigner distribution is

PGOE~s!;PWigner~s!5
p

2
s expS 2p

4
s2D , ~2!

wheres is the spacing between adjacent levels. This exp
sion is obtained for an ensemble of two-dimensional ma
ces with^s&51. This result is very near to that obtained
the limit of a very large dimension@3#.

The description of systems intermediate between ch
and order has been largely discussed in the literature,
many models were proposed. Some of the ideas used to
scribe this transition are represented by four models:
Berry-Robnik model@4# based on semiclassical argumen
the 232 matrix model by Caurier, Grammaticos, and R
mani ~CGR! @5#, the Lenz-Haake~LH! model @6#, a 232
matrix model based on Dyson’s proposal@7#, and finally the
deformed Gaussian orthogonal ensemble~DGOE! @8# which
uses both concepts of information theory and Dyson’s p
posal to construct an ensemble ofN3N matrices. The pur-
pose of the present paper is to compare these four mo
and the Brody ansatz with each other. In this way, th
NND’s were applied to the isotropic quartic oscillator a
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the merits and difficulties of these descriptions were d
cussed. In addition, long range correlations are analyze
terms of the Dyson-Mehta statisticD3(L).

The paper is organized as follows: in Sec. II, the ma
ideas and the NND of each description, as well as the
pressions used to fitD3(L), are presented. In Sec. III, th
main features of the quartic oscillator are summarized.
Sec. IV, the analysis and results are presented. A short
cussion in Sec. V concludes the paper.

II. MODELS

The first widely used expression for the NND of interm
diate systems was proposed by Brody@9# in 1973 with the
aim of quantifying the repulsion among energy levels@10#.
He suggested the ansatz

PBrody~s!5Asvexp~2asw11!, ~3!

whereA anda depend onv in the following ways:

A5~v11!a,
~4!

a5FGS v12

v11D Gv11

.

It is easy to see that whenv50, no level repulsion exists
and this gives the Poisson distribution; whenv51 the
Wigner distribution is obtained. In addition, Eq.~4! guaran-
tees the proper normalization ofPBrody(x). This handy ex-
pression has turned the parameterv in Eq. ~3! into a widely
used gauge of the chaoticity of intermediate systems,
though it lacks physical meaning. As a matter of fact, oth
models were proposed since then aiming at a more phys
description of the chaos-order transition.
321 ©1999 The American Physical Society
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In 1984, Berry and Robnik proposed a model based
semiclassical arguments@4#. By considering the phase spac
as made up of statistically independent regular and cha
parts, they found

PBR~s!5r2e2rserfcSAp

2
~12r!sD

1F2r~12r!1
1

2
p~12r!3sG

3expS 2rs2
1

4
~12r!2s2D , ~5!

which interpolates between the Wigner and Poisson distr
tions whenr goes from zero to unity. Although good resul
were obtained, the statistical independence of the chaotic
regular parts of the phase space implies that there is no l
repulsion in the intermediate region between chaos and
der. However, it is physically expected that level repuls
persists over a sufficiently short level distances until the
pure Poissonian case is reached@10#.

The model proposed in 1990 by Caurier, Grammatic
and Ramani@5# uses an ensemble of 232 matrices, where
the off-diagonal term is modulated as a perturbation. Th
found

PCGR~s!5
s

g
Ap

8
I 0S s2

16g2D expS 2
s2

16g2D e2s. ~6!

The Poissonian situation is obtained wheng50. As g in-
creases, expression~6! tends to the Wigner distribution
however, it leads to numerical problems when approach
that limit.

A more sophisticated 232 matrix model was proposed i
1996 by Lenz and Haake@6# by considering Dyson’s pro
posal@7#. This says that any mixed system can be descri
by the Hamiltonian

H5H01«H1 , ~7!

where H0 is the Hamiltonian which describes the origin
Poissonian situation, andH1 provides the coupling betwee
the levels defined byH0 ; in the case of strongest couplin
betweenH0 andH1 , the HamiltonianH will be a GOE ma-
trix. By working out the related joint probability distributio
P@H# of the matrix elements, the authors were able to w
the NND of an ensemble of 232 matrices as

PLH~s!5
su~l!2

l
expS 2u~l!2s2

4l2 D
3E

0

`

e2~j212jl!I 0S sju~l!

l D dj. ~8!

Here

u~l!5expS l2

2 D E
0

p/2

cosFl2

2
tanu2uG du ~9!
n
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is the Kummer function,I 0 is the modified Bessel function o
zeroth order@11#. For this Lenz-Haake distribution the Pois
sonian case is achieved whenl50, and, for large enoughl,
the Wigner distribution is obtained. In fact, forl51, Eq.~8!
is already very similar to the Wigner distribution.

Despite the good results generally obtained by the ab
models in the description of NND fluctuations, many aspe
of systems in the transition between chaos and order are
properly described. For example, these models do not
scribe the statistical fluctuations of the eigenvector coe
cients or the long range correlations among levels. In
case of matrix models like those of Caurier, Grammatic
and Ramani and Lenz and Haake, the description of s
features requires a joint probability distributionP@H# for
high-dimensional matrices. This cannot be calculated
these two models, since they are based on ensembles
32 matrices. On the other hand, the simplification of co
sidering the chaotic and regular parts of phase space as
tistically independent—proposed by Berry and Robnik
allows one to use the sum property of the Dyson-Me
statisticD3 , a typical measure of long range correlations@3#;
that is

D3
BR~L !5D3

GOE@rL#1D3
Poi@~12r!L#. ~10!

HereL is an energy interval in units of the mean level d
tance, andr is a measure of the chaotic fraction of pha
space@see Eq.~5!#. The Poissonian term reads

D3
Poi~L !5

L

15
, ~11!

and the GOE term is

D3
GOE~L !5E

0

L

dr
2

L4
~L322L2r 1r 3!S2~r !. ~12!

In this expression,S2 is the so-calledS2 statistic or number
variance. It is the average squared differenceS2(L)
5^@n(L)2L#2& between the actual numbern(L) and the
expected numberL of levels in an interval of given length
see Ref.@3#. Expression~10! gives good results when de
scribing data@12#, but it is important to keep in mind that th
statistical independence proposed in this framework has
undesirable consequence of eliminating the level repulsio
the transition region between chaos and order, as discu
above.

In order to avoid these problems, two of us propose
matrix model@8# which also makes use of Dyson’s propos
but now written in terms of high-dimensional matrices. T
ensemble proposed in Ref.@8# was named the ‘‘deformed
Gaussian orthogonal ensemble,’’ where the term ‘‘d
formed’’ is due to Dyson@10#. The difficulties with the ana-
lytical calculation of a joint probability distribution for high
dimensional matrices are avoided by using informat
theory in a similar way as in Balian’s work@13#. The infor-
mation content of an ensemble of matrices is defined as

I $P@H#%5E d@H#P@H# ln P@H#, ~13!
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where

d@H#5)
i> j

d@H# i j .

The desired joint probability distribution is obtained by t
minimization of I $P@H#% subject to appropriate constrain
@14#.

Two of these constraints are

E d@H#P@H#51,

~14!

^Tr H2&5E d@H#P@H#Tr H25C1 ,

the first of which requires the usual normalization, and
second of which limits the length of the spectrum ofH. By
minimizing expression~13! subject to these two constraint
the GOE distribution is obtained.

In order to construct an ensemble of matrices able to
scribe the level fluctuations of systems in the transition
gion between chaos and order, it is necessary to introdu
third constraint. This was done in Ref.@8#, and here we will
reproduce the arguments presented there to explain the
straint.

First let us introduce the projection operators

P5(
i 51

M

u i &^ i u, Q512P, ~15!

whereu i & are basis vectors chosen such thatP andQ project
H on subspaces that belong to different symmetry classe
e.g., different parities. By help of the projection operato
the HamiltoniansH are decomposed into blocks

H5S PHP PHQ

QHP QHQ
D 5V01V1 . ~16!

V0 and V1 are matrices for which just the diagonal respe
tively nondiagonal blocks are nonzero.

We impose the condition that the variance of the diago
and off-diagonal blocks be different, and that this differen
be controlled by an additional parameter. This condition
presses Dyson’s proposal.

By properly choosingV0 and V1 the transition between
the GOE and the Poisson limits can be described. The t
condition is formalized by

^Tr PHQHP&5(
i 51

M E d@H#P@H#Tr PHQHP5C2 ,

~17!

By using Lagrange multipliers it is now possible to calcula
the desired joint probability distribution. For convenien
one defines a new parametera as the ratio betweenC1 and
C2 . In this way one obtains
e

e-
-
a

on-
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,

-
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e
-

rd

PDGOE@H#5PGOE@H#~11a!M ~N2M !/2

3expS a(
i

Tr PHQHPD , ~18!

where

PGOE@H#522N/2S p

2 D 2N~N21!/4

exp~2Tr H2!. ~19!

HereM is the dimension of the blocks andN is the dimen-
sion of the entire matrix. By takingN52 and M51, it is
possible to obtain an expression to describe the NND for
DGOE:

PDGOE~s!5S 11
a

2 D 1/2

s expH 2S 1

2
1

a

8 D s2J I 0S as2

8 D .

~20!

The functionI 0(x) is the modified Bessel function of zerot
order @11#. Here the Wigner limit is obtained whena50,
and the Poisson distribution whena→`. It is important to
note that although this expression was obtained for 232
matrices, Eq.~18! was obtained for an arbitrary dimensio
This opened the possibility of studying the statistical fluctu
tions of the eigenvector coefficients@15#. Another conse-
quence of Eq.~18! is the possibility to study the long rang
correlations among levels, for example, using the aboveD3
statistic. Unfortunately, an analytical expression forD3(L)
obtained in the DGOE framework is not yet available.

A simple ansatz for the Dyson-Mehta statistic which i
terpolates between the Poissonian and Gaussian limits i

D3
ansatz~L !5qD3

GOE~L !1~12q!D3
Poi~L !. ~21!

This expression was used in the analysis of the eigenva
of the isotropic quartic oscillator and the results were co
pared with those from Eq.~10!. Equation ~21! is just an
empirical linear interpolation; therefore, theq parameter
here—contrary tor in theD3

BR case—is not a measure of th
fraction of phase space that is chaotic.

III. ISOTROPIC QUARTIC OSCILLATOR

The isotropic quartic oscillator is a system described
the classical Hamiltonian

H5
~px

21py
2!

2
1

x2y2

2
1

b~x41y4!

4
, ~22!

and the quantum analog is

H 2
\2

2
¹1

x2y2

2
1

b~x41y4!

4 J c5Ec . ~23!

This system is interesting for the comparison of the fi
descriptions cited in Sec. II, since it shows a well stud
transition between chaos and order~see, for example, Ref
@16#! when b goes from zero to 1. Although there is n
physical system described by this Hamiltonian, its dynami
properties may be important for many physical areas as
example in QCD, thanks to the functional similarity with th
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Yang-Mills equations@17,18#. Our aim is to compare the
above five descriptions in the case of situations intermed
between chaos and order for this quartic oscillator. The qu
tic oscillator itself—i.e., the relationship between the para
eterb of Hamiltonian~23! and the chaoticity of the system
the question how fast the transition between chaos and o
occurs, whether this transition is monotonic withb, etc.—all
this is not investigated here. These questions have been
cussed in many other works~see Refs.@16,17# and references
therein!.

An important feature of this system is the scaling betwe
orbits at different energies. By considering a trajecto
„p(t),q(t)… at energyE, it is possible to determine anothe
trajectory„p0(t),q0(t)… at energyE0 by the scaling

p~ t !5«2/3p0~«3t !, q~ t !5«1/3q0~«3t !, ~24!

where «5(E/E0)3/4 is the scaling factor between differen
trajectories. The energyE0 is taken to be 0.5. This mean
that the ground state energy is approximately equal to un
te
r-
-

er

is-

n
y

y.

The average behavior of the cumulative level dens
N(E) could not be written in closed form due to analytic
difficulties related to the isotropy property of the Ham
tonian@19#. Nevertheless, it is known@19# thatN(E) must be
proportional to the scaling factor up to second order, nam

N~E!}E3/2}«2. ~25!

TABLE I. Limiting parameter values of DGOE, Caurier
Grammaticos-Ramani~CGR!, Lenz-Haake~LH!, Brody, and Berry-
Robnik ~BR! for the numerical fitting~maximum chaoticity—GOE;
maximum regularity—Poisson!.

Model GOE Poisson

DGOE 0 500
CGR 1 0
LH 1 0
Brody 1 0
BR 0 1
ameter
TABLE II. Results from the NND of the isotropic quartic oscillator. Under the heading ‘‘Class,’’ the symmetry class and the par
b appearing in the Hamiltonian~23! are listed. For the five descriptions DGOE, Caurier-Grammaticos-Ramani~CGR!, Lenz-Haake~LH!,
Brody, and Berry-Robnik~BR!, the parameters of the NND are given together with the associated error (s) and the normalizedx2 of the
fit.

DGOE CGR LH Brody BR
Class a6sa x2 g6sg x2 l6sl x2 v6sv x2 r6sr x2

A1, b50.01 3.4460.19 (1.4) 0.3560.01 (5.0) 0.6260.14 (1.6) 0.8360.07 (1.2) 0.0660.03 (1.1)

A1, b50.2 9.3160.15 (3.7) 0.2360.01 (3.2) 0.2960.02 (2.4) 0.4860.03 (0.9) 0.2260.02 (1.5)

A1, b50.4 500.0060.15 (3.7) 0.2360.01 (4.9) 0.2660.03 (6.2) 0.1360.02 (0.8) 0.5260.02 (0.5)

A1, b50.6 500.0060.15 (3.9) 0.1760.01 (4.5) 0.2660.03 (6.4) 0.1560.03 (1.3) 0.5060.02 (1.0)

A1, b50.8 500.0060.16 (4.2) 0.2860.01 (5.5) 0.2760.03 (6.0) 0.1460.03 (1.1) 0.5460.02 (0.8)

A1, b51.0 500.0060.17 (5.4) 0.3160.01 (6.8) 0.2560.03 (7.3) 0.1060.03 (1.8) 0.6460.02 (1.8)

B2, b50.01 3.1260.08 (0.2) 0.3560.02 (4.8) 0.7660.10 (0.5) 0.9160.03 (0.2) 0.0360.01 (0.2)

B2, b50.2 24.5960.11 (2.4) 0.2960.01 (4.6) 0.2760.02 (2.4) 0.3560.03 (1.9) 0.3360.04 (4.0)

B2, b50.4 500.0060.15 (4.1) 0.2460.01 (6.3) 0.2360.02 (7.6) 0.0460.02 (1.2) 0.7560.01 (1.2)

B2, b50.6 500.0060.14 (3.6) 0.2660.01 (5.5) 0.2460.02 (6.4) 0.0760.02 (1.1) 0.6560.02 (1.1)

B2, b50.8 500.0060.16 (4.7) 0.2260.01 (5.6) 0.2460.03 (7.6) 0.0360.02 (0.9) 0.7260.01 (0.8)

B2, b51.0 500.0060.14 (3.9) 0.1060.01 (2.5) 0.2360.02 (7.1) 0.0160.02 (0.6) 0.8660.01 (0.6)

B1, b50.01 3.0560.12 (0.4) 0.3860.02 (4.9) 0.7160.11 (0.7) 0.9660.05 (0.5) 0.0260.02 (0.5)

B1, b50.2 24.0960.08 (1.2) 0.2860.02 (3.7) 0.2560.01 (1.4) 0.4660.03 (1.6) 0.2060.04 (3.7)

B1, b50.4 500.0060.15 (4.0) 0.1660.01 (4.4) 0.2560.03 (7.5) 0.0360.02 (1.1) 0.7760.02 (1.0)

B1, b50.6 500.1560.17 (5.5) 0.3460.01 (8.0) 0.2160.02 (9.1) 0.0160.01 (1.2) 0.8160.01 (1.3)

B1, b50.8 500.1760.17 (5.4) 0.3460.01 (8.1) 0.2560.03 (8.5) 2.2160.02 (1.1) 0.7660.02 (1.1)

B1, b51.0 500.0060.14 (4.0) 0.1360.01 (3.1) 0.2360.02 (7.0) 0.0160.02 (0.6) 0.8860.01 (0.6)

A2, b50.01 2.9360.24 (1.7) 0.3460.02 (6.4) 0.8360.23 (2.2) 0.9960.01 (1.3) 0.0160.01 (1.3)

A2, b50.2 8.7560.13 (2.5) 0.2360.01 (2.6) 0.2960.02 (1.6) 0.5660.02 (0.6) 0.1660.02 (1.4)

A2, b50.4 500.0060.16 (4.1) 0.3360.01 (6.1) 0.2560.03 (6.5) 0.1260.02 (1.0) 0.5660.02 (0.8)

A2, b50.6 500.0060.14 (3.4) 0.1760.01 (4.2) 0.2660.03 (5.7) 0.1460.03 (1.2) 0.5260.02 (0.9)

A2, b50.8 500.0060.14 (3.5) 0.2360.01 (4.6) 0.2660.03 (6.1) 0.1060.02 (1.0) 0.6060.02 (0.9)

A2, b51.0 500.0060.16 (4.2) 0.2160.01 (3.9) 0.2660.03 (5.2) 0.1360.03 (1.3) 0.5760.02 (1.4)
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FIG. 1. ~a!–~f! present the histograms of th
NND’s for the B2 symmetry class andb50.01,
0.20, 0.40, 0.60, 0.80, and 1.00. The curves
the best fits from the DGOE~dashed!, Caurier,
Grammaticos, and Ramani~dot-dashed!, and
Lenz and Haake~dotted! models. Full curves
show Poisson and GOE limiting cases.
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This result was used for the convergence analysis of the
genvalues obtained numerically.

IV. ANALYSIS AND RESULTS

The Hamiltonian was rotated byp/4 in order to minimize
the classically forbidden region of phase space and impr
the convergence of the eigenvalues@16#. The symmetry
classes of the system were also conveniently separate
order to simplify the identification of the level repulsion ph
nomena.

In this way, the eigenstates of the isotropic quartic os
lator can be classified according to the symmetry classe
the C4v symmetry group. The irreducible representations
the group split into four one-dimensional representations
one two-dimensional representation~doubly degenerated!. In
this work we restricted ourselves to the four one-dimensio
representations, usually labeled asA1 ~symmetric under re-
flections on thex andy axes, symmetric under reflections o
i-

e

in

l-
of
f
d

al

the lines defined byx1y50 andx2y50), B2 ~antisym-
metric, symmetric!, B1 ~symmetric, antisymmetric!, andA2

~antisymmetric, antisymmetric!.
The Hamiltonian was expanded in a convenient basis

each symmetry class, and the eigenvalues were numeric
determined for differentb values. The frequency of the os
cillator basis was chosen such as to minimize the trace of
Hamiltonian matrix from Eq.~23! and improve the conver
gence. In order to obtain a number of eigenvalues mean
ful for the statistical analysis, matrices of dimension 3240
the A1 andB2 symmetry classes and of dimension 3160
B1 andA2 were constructed. The convergence of the eig
values was tested using relation~25! and requiring that the
differenceN(E)2N(E) must be very small.

Since Eq.~25! is only an approximation toN(E), the
convergence test was done in a recursive way~this procedure
is based on the arguments presented on Ref.@19#!. In a first
step, the eigenvalues were rescaled as
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FIG. 2. The same as in Fig. 1, but for th
DGOE ~dashed!, Brody ~dotted!, and Berry and
Robnik ~dotted-dashed! descriptions.
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E3/2→«2, ~26!

andN(E) was written as a function of«2. The mean stair-
case function was then supposed to be described by the e
version of Eq. ~25!. The differences betweenN(E) and
N(E) would then be caused by those eigenvalues with
convergence. At the end of this first step there were 2
converged eigenvalues forb50.01, and 2300 forb50.20,
0.40, 0.60, 0.80, and 1.00 for theA1 and B2 symmetry
classes; and 1800 forb50.01, and 2100 forb50.20, 0.40,
0.60, 0.80, and 1.00 forB1 andA2 .

Using just these ‘‘converged’’ eigenvalues, the calcu
tions were repeated looking for the best fitted polynomial
N(«2). Since the mean staircase function is written in ter
of «2, the degree of this polynomial could not be mu
larger than unity if the higher order terms in Eq.~25! were of
lower relevance. In this case, higher degrees for this poly
mial must be related to eigenvalues with bad convergen
which must be eliminated from the spectra for the analy
All these steps were considered just in order to provid
act

d
0

-
r
s

o-
e,
s.
a

more careful analysis of the convergence of the numeric
obtained eigenvalues and to increase our confidence in
results.

In this way, 500 converged eigenvalues were obtained
b50.01, and 1500 forb50.20, 0.40, 0.60, 0.80, and 1.00 fo
the A1 and B2 symmetry classes; and 450 forb50.01, and
1400 forb50.20, 0.40, 0.60, 0.80, and 1.00 forB1 andA2 .
The degree of the polynomials considered for the unfold
were 1, 2, or 3, according to the symmetry class andb value.

The NND’s obtained from the unfolded converged eige
values were then analyzed using the five formulas descr
above and normalizedx2 values were calculated for the fit
tings in the usual way. Possible effects on thesex2 values
due to a smaller number of eigenvalues were also inve
gated. In this case, cutting some hundreds of the highe
lower eigenvalues of the spectra showed no other effe
than the statistical fluctuations related to the different amo
of data.

The limiting parameter values used in the numeri
calculations—those for which the five distributions repr
duce the Wigner and Poisson cases—are displayed in T
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I. The five numerically adjusted parameters for eachb value
for each symmetry class are presented in Table II. T
curves and histograms for the NND’s for all analyzedb
values for theB2 symmetry class are displayed in Fig

FIG. 3. Dyson-Mehta statistic for theB2 symmetry class and
b50.01, 0.20, 0.40, 0.60, 0.80, and 1.00. The best fits from
Berry-Robnik expression~10! ~dashed! and the ansatz~21! ~varying
full curve! are given. The uppermost and the lowermost full curv
correspond to the limiting cases of Poisson and GOE statis
respectively.

FIG. 4. The same as in Fig. 3, but forb50.20, 0.24, 0.28, 0.32
0.36, and 0.40.
e

1~A!–1~F! and 2~A!–2~F! ~the results for the other thre
symmetry classes are similar!.

The rich structure seen in the phase space analysis o
transition between chaos and order of the quartic oscillato
not observed here@20#. A possible explanation may be tha
the quantum calculation hides, due to the linear nature of
Schrödinger equation, the classical phase space struct
Additionally, we would like to point out that statistical dat
based analyses are not in a position to show all the de
present in the transition between order and chaos. Ra
after an appropriate rescaling of variables, the random ma
theory would be able to describe some universal statist
properties shared by a large class of Hamiltonians@21#.

The results obtained with expression~10! and ansatz~21!
for D3(L) are shown in Figs. 3 and 4. The parameters
these two distributions were both calledq in order to sim-
plify the notation: in both cases, the Poissonian limit cor
sponds toq50 and 1 is the Wigner distribution. The Berry
Robnik parameter is once more a measure of the cha
fraction of phase space. Figure 5 displays the adjusteq
parameters for Eqs.~10! and~21! as a function of theb value
of the oscillator@Eq. ~23!# for the four analyzed symmetry
classes.

The first point worth mentioning is the apparent absen
of level repulsion for intermediateb values in the histograms
of Figs. 1 and 2. This is a consequence of the relatively sm
number of eigenvalues considered due to computational c
straints.

In Figs. 3 and 4,D3(L) shows that short and long rang
correlations undergo a transition between chaos and orde
increasingb values with different speeds: the most regu
situation is achieved much faster by short range correlati
than by long range correlations. This result is an interest
aspect of the transition between chaos and order of the q
tic oscillator that we are not able to explain.

According to the NND’s, we note the good agreeme
between the results of all five descriptions concerning
chaoticity of the system: with increasingb the quantized
quartic oscillator becomes more and more regular, as

e

s
s,

FIG. 5. Adjustedq parameters for ansatz~21! ~open circle! and
the Berry-Robnik expression~10! ~full square! for theA1 , B1 , B2 ,
andA2 symmetry classes.
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pected. Nevertheless, it is interesting to see that the m
regular value of the CGR, LH, and BR parameters are ne
achieved even if the system is completely regularb
51.0). In the DGOE case, the Poissonian curve is obtai
whena→`. Here, the maximum parameter value obtain
is already a good result, as shown by thex2 values displayed
in Table II.

The most Poissonian case of the DGOE model display
kind of ‘‘shoulder’’ for small s/^s& values. This can be
explained by a simple physical argument: as soon as
level repulsion is introduced in the system, degeneracies
lifted, causing a small increase in the probability for ve
small spacings between levels. This fact together w
the normalization constraint of the distribution causes
shoulder in the DGOE curve for nearly Poissonian param
values @22#. Unfortunately, this and other aspects of t
NND’s for small spacings can only be observed in his
grams obtained from a higher amount of data, not availa
here.

Note the saturation of the adjusted DGOE parameter:
ready forb50.4, the maximum parameter value is obtaine
This is probably related to the absence of level repulsion
the intermediate situation between maximum chaos
maximum regularity—seen in the histograms of NND—d
to the relative small number of eigenvalues considered
already pointed out. It is also possible to see a saturation
the LH parameter forb>0.4 and this behavior shows up i
all other three symmetry classes.

By inspection of Fig. 1~A!, it is possible to see problem
in the CGR description of data: the adjusted curve lies
below the histogram, what is also represented in Table II
the x2 values forb50.01. In fact, it hardly provides a goo
description in all cases except that ofb51.0 ~strongly Pois-
sonian situation!. This is probably due to the strong approx
mations introduced by the authors of Ref.@5# in the deriva-
tion of Eq. ~6!.

According to thex2 values, the LH distribution has prob
lems describing the data with increasing regularity of
system. The difficulties with the numerical fitting increase
l→0, i.e., the Poissonian limit@see Eq.~8!#, and were al-
ready noted by another group@23#. Here we tested differen
numerical methods to calculate the special functions and
lated integrals in Eq.~8! and used those which gave the mo
stable results~subroutinesGAULEG and TRAPZD from Ref.
@24#!.

The x2 results displayed in Table II show smaller valu
for the Brody distribution, the BR case, and the DGOE.

Concerning the Dyson-Mehta statistic displayed in Figs
and 4, it is interesting to note the good agreement betw
the two descriptions tested: in almost all cases it is e
difficult to distinguish between the two curves. This is pro
et
st
er

d
d
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ably due to theD3
Poi(L) term @Eq. ~11!#, which is the same

for Eqs.~10! and~21! and seems to dominate the behavior
both curves. Also, the results from Fig. 5 show a pecu
relation between the adjustedD3(L) parameters and theb
values@Eq. ~23!#. Such behavior is related to the differe
chaos-order transition speeds for the short and long ra
correlations between eigenvalues, as already mentio
above.

V. FINAL REMARKS

In this work, five formulas proposed to describe syste
in the transition region between chaos and order were c
pared, namely, the Brody ansatz, the Berry-Robnik mod
the Caurier-Grammaticos-Ramani model, the Lenz-Ha
model, and the DGOE model. In order to do this, the fi
proposed NND’s were applied to the spectra of the isotro
quartic oscillator.

The long range counterpart of the level correlations w
analyzed in terms of the Dyson-Mehta statisticD3 . Here an
expression usually associated with the Berry-Robnik form
ism was applied. A simple expression for theD3 statistic
which interpolates between the Poissonian and GOE lim
was also considered. The results show that the short and
range correlations undergo a transition between chaos
order for increasingb value of the quartic oscillator@Eq.
~23!# with different speeds.

In all cases, the NND of the DGOE provided a goo
description for the level fluctuations of the spectra. The co
parison of the models teaches us that the DGOE model
advantages over the others:~i! it provides as good a descrip
tion for the NND as any one of the other four formulas; a
~ii ! it provides an analytical expression for the probabil
distribution of theN3N matrix ensemble, which allows th
study of the statistical fluctuation properties of the eleme
of the eigenvectors~as already done in Ref.@15#!, and also
opens a new possibility of investigation of the long ran
correlations among levels.
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