PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999
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The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-
Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by
Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The
advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple
extension of the expression for the Dyson-Mehta statiS§i@are compared with those of a more popular one,
usually associated with the Berry-Robnik formaligi81063-651%99)01201-5

PACS numbgs): 05.45.Xt, 47.52+j, 24.60—k

[. INTRODUCTION the merits and difficulties of these descriptions were dis-
cussed. In addition, long range correlations are analyzed in

Thanks to the pioneering work of Berry and Tabbfand  terms of the Dyson-Mehta statistic(L).
to the work of Bohigas, Giannoni, and Schif#i, it is nowa- The paper is organized as follows: in Sec. Il, the main
days largely accepted that regular systems show level flugdeas and the NND of each description, as well as the ex-
tuations of the Poissonian type while chaotic systems havpressions used to fihz(L), are presented. In Sec. lll, the
eigenvalue fluctuations like those of the matrix ensembles ofnain features of the quartic oscillator are summarized. In
Dyson. Particularly, in the case of the nearest-neighbor spa&ec. 1V, the analysis and results are presented. A short dis-
ing distribution(NND), the Poissonian case reads cussion in Sec. V concludes the paper.

Pro(s)=€"* 1)
Il. MODELS

whereas the so-called Wigner distribution is , . . .
9 The first widely used expression for the NND of interme-

- — diate systems was proposed by Brd@y in 1973 with the
Pcoe(S) ~ Pwigned S) = Esex;{Tsz), (2 aim of quantifying the repulsion among energy lev§].
He suggested the ansatz

wheres is the spacing between adjacent levels. This expres-
sion is obtained for an ensemble of two-dimensional matri- Parody(S) =As’exp — as"*1), 3
ces with{s)=1. This result is very near to that obtained in
the limit of a very large dimensiof8]. . .
The description of systems intermediate between chao¥hereA and« depend orw in the following ways:
and order has been largely discussed in the literature, and

many models were proposed. Some of the ideas used to de- A=(0+1)a,

scribe this transition are represented by four models: the 4
Berry-Robnik model4] based on semiclassical arguments,

the 2x2 matrix model by Caurier, Grammaticos, and Ra- w+2\]e*?

mani (CGR) [5], the Lenz-HaakdLH) model[6], a 2x 2 a=I\—=

matrix model based on Dyson’s propo§d], and finally the
deformed Gaussian orthogonal ensemBISOE) [8] which
uses both concepts of information theory and Dyson’s proit is easy to see that whea=0, no level repulsion exists,
posal to construct an ensemble & N matrices. The pur- and this gives the Poisson distribution; when=1 the
pose of the present paper is to compare these four modeWigner distribution is obtained. In addition, E@l) guaran-
and the Brody ansatz with each other. In this way, theirtees the proper normalization &fgoq/(X). This handy ex-
NND’s were applied to the isotropic quartic oscillator and pression has turned the parametein Eq. (3) into a widely

used gauge of the chaoticity of intermediate systems, al-

though it lacks physical meaning. As a matter of fact, other

*Present address: Max-Planck-Instittit fernphysik, D-69029 models were proposed since then aiming at a more physical

Heidelberg, Germany. description of the chaos-order transition.

1063-651X/99/561)/321(9)/$15.00 PRE 59 321 ©1999 The American Physical Society



322 C. 1. BARBOSA, C. L. LIMA, M. S. HUSSEIN, AND M. P. PATO PRE 59

In 1984, Berry and Robnik proposed a model based oiis the Kummer functionlg is the modified Bessel function of
semiclassical argumenitd]. By considering the phase space zeroth ordef11]. For this Lenz-Haake distribution the Pois-
as made up of statistically independent regular and chaotisonian case is achieved wheer-0, and, for large enough,
parts, they found the Wigner distribution is obtained. In fact, far=1, Eq.(8)

is already very similar to the Wigner distribution.
iy Despite the good results generally obtained by the above
PBR(S):Pze_pserfC(7(1—/0)5) models in the description of NND fluctuations, many aspects
of systems in the transition between chaos and order are not
properly described. For example, these models do not de-
scribe the statistical fluctuations of the eigenvector coeffi-
cients or the long range correlations among levels. In the
1 20 case of matrix models like those of Caurier, Grammaticos,
xexp —ps— 7(1-p)%s7, (3 and Ramani and Lenz and Haake, the description of such
features requires a joint probability distributid?{H] for
which interpolates between the Wigner and Poisson distribubigh-dimensional matrices. This cannot be calculated in
tions whenp goes from zero to unity. Although good results these two models, since they are based on ensembles of 2
were obtained, the statistical independence of the chaotic an§2 matrices. On the other hand, the simplification of con-
regular parts of the phase space implies that there is no levéidering the chaotic and regular parts of phase space as sta-
repulsion in the intermediate region between chaos and ofistically independent—proposed by Berry and Robnik—
der. However, it is physically expected that level repulsion@llows one to use the sum property of the Dyson-Mehta
persists over a sufficiently short level distanseintil the  statisticAs, a typical measure of long range correlati8%

+

1
2p(1=p)+ 5 m(1=p)’s

pure Poissonian case is reachéd. that is
The model proposed in 1990 by Caurier, Grammaticos, .
and Raman([5] uses an ensemble ofx2 matrices, where ASR(L)=AFT pL]+ A (1-p)L]. (10
the off-diagonal term is modulated as a perturbation. They
found HerelL is an energy interval in units of the mean level dis-

tance, andp is a measure of the chaotic fraction of phase
space see Eq(5)]. The Poissonian term reads

PR<>S\/;'(52 e 9

s)=—\/% exp — e s.

€6 y V89 16,2 16y2

The Poissonian situation is obtained whes0. As y in-

creases, expressiof6) tends to the Wigner distribution,

however, it leads to numerical problems when approachin

that limit. Lo
A more sophisticated 2 2 matrix model was proposed in GO :f L3 —2L%r+r3)32

1996 by Lenz and Haakgg] by considering Dyson’s pro- APRL) 0 er4(L 2L+ rRAT). (12

posal[7]. This says that any mixed system can be described

by the Hamiltonian In this expressiony.? is the so-callec ? statistic or number
variance. It is the average squared differenEé(L)
H=Ho+eH,, (7)) =([n(L)—L]? between the actual numbex(L) and the
expected numbek of levels in an interval of given length;
whereH, is the Hamiltonian which describes the original see Ref[3]. Expression(10) gives good results when de-
Poissonian situation, and; provides the coupling between scribing datd12], but it is important to keep in mind that the
the levels defined byd,; in the case of strongest coupling statistical independence proposed in this framework has the
betweenH, andH;, the HamiltonianH will be a GOE ma-  undesirable consequence of eliminating the level repulsion in

trix. By working out the related joint probability distribution the transition region between chaos and order, as discussed
P[H] of the matrix elements, the authors were able to writegpove.

APOi _L
L) = 12, ay

gnd the GOE term is

the NND of an ensemble of>22 matrices as In order to avoid these problems, two of us proposed a
matrix model[8] which also makes use of Dyson’s proposal,
su(\)? —u(N)3s? but now written in terms of high-dimensional matrices. The
PLu(s)= N N2 ensemble proposed in RdB] was named the “deformed

Gaussian orthogonal ensemble,” where the term ‘“de-
E sEUu(N) formed” is due to Dysori10]. The difficulties with the ana-
xf e (¢ +2§x)Io( X )d : (8) lytical calculation of a joint probability distribution for high-
0 dimensional matrices are avoided by using information
theory in a similar way as in Balian’s wofid3]. The infor-
mation content of an ensemble of matrices is defined as

Here

N2\ (a2 [\Z?
u()\)=exy{?> JO cos{?tane—e}da 9 I{P[H]}=f d[H]P[H]InP[H], (13
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where Pocod H1=Peod H1(1+a)" N7

diH]=T1 d[H; - ><exp(a§i‘, TrPHQHP), (18)
i=]
The desired joint probability distribution is obtained by the where
minimization of [{P[H]} subject to appropriate constraints 7\ ~N(N=1)/4
[14] PGOE{H] — 2N/2( E)
Two of these constraints are

exp—TrH?). (19

HereM is the dimension of the blocks ard is the dimen-
j d[H]P[H]=1 sion of the entire matrix. By takingl=2 andM=1, it is
' possible to obtain an expression to describe the NND for the

(14  DGOE:
14 o 1/2
5| Sex
) . . o (20

the first of which requires the usual normalization, and the
second of which limits the length of the spectrumHafBy  The functionl o(x) is the modified Bessel function of zeroth
the GOE distribution is obtained. . and the Poisson distribution when—. It is important to

In order to construct an ensemble of matrices able to depgte that although this expression was obtained for22
scribe the level fluctuations of systems in the transition rematrices, Eq(18) was obtained for an arbitrary dimension.
gion between chaos and order, it is necessary to introduce s opened the possibility of studying the statistical fluctua-
third constraint. This was done in R¢8], and here we will  {ions of the eigenvector coefficienfd5]. Another conse-
repr_oduce the arguments presented there to explain the COuence of Eq(18) is the possibility to study the long range
straint. . o correlations among levels, for example, using the abbye

First let us introduce the projection operators statistic. Unfortunately, an analytical expression fog(L)

obtained in the DGOE framework is not yet available.

SZ
sz}lo(a— .
8

1l «

(Ter)zfd[H]P[H]TrHZZCl, 543

Ppcoe(s) =

M o A simple ansatz for the Dyson-Mehta statistic which in-
P:i:El liXil, Q=1-P, (15 terpolates between the Poissonian and Gaussian limits is
AL =gASORL) +(L-@)AZL). (2D

whereli) are basis vectors chosen such tRandQ project
H on subspaces that belong to different symmetry classes, ghis expression was used in the analysis of the eigenvalues
e.g., different parities. By help of the projection operators,of the isotropic quartic oscillator and the results were com-
the HamiltonianH are decomposed into blocks pared with those from Eq(10). Equation(21) is just an
empirical linear interpolation; therefore, thg parameter
here—contrary te in the A?R case—is not a measure of the

=V,+V;. (16)  fraction of phase space that is chaotic.

PHP PHQ
H:

QHP QHQ
Ill. ISOTROPIC QUARTIC OSCILLATOR

V, andV, are matrices for which just the diagonal respec- . ) . ) ) )
tively nondiagonal blocks are nonzero. The isotropic quartic oscillator is a system described by

We impose the condition that the variance of the diagonafl classical Hamiltonian
and off-diagonal blocks be different, and that this difference

2 2
be controlled by an additional parameter. This condition ex- H— (Pt Py) 4 x?y? N By 22)
presses Dyson’s proposal. 2 2 4 ’
By properly choosing/y and V; the transition between )
the GOE and the Poisson limits can be described. The thir@nd the quantum analog is
condition is formalized by 42 2y2  B(xi+yY)
~ SV ot =By . (29)

M
TrPHQHP)= dePHTrPH HP=C,,
< QHP) 21 [HIPLH] Q 2 This system is interesting for the comparison of the five

(17)  descriptions cited in Sec. Il, since it shows a well studied
transition between chaos and ordsee, for example, Ref.
By using Lagrange multipliers it is now possible to calculate[16]) when 8 goes from zero to 1. Although there is no
the desired joint probability distribution. For convenience physical system described by this Hamiltonian, its dynamical
one defines a new parameteras the ratio betwee@, and  properties may be important for many physical areas as for
C,. In this way one obtains example in QCD, thanks to the functional similarity with the
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Yang-Mills equations[17,18. Our aim is to compare the TABLE |I. Limiting parameter values of DGOE, Caurier-
above five descriptions in the case of situations intermediat@rammaticos-RamatiCGR), Lenz-HaakeLH), Brody, and Berry-
between chaos and order for this quartic oscillator. The quarRobnik(BR) for the numerical fittingmaximum chaoticity—GOE;
tic oscillator itself—i.e., the relationship between the param-maximum regularity—Poisson

eter 8 of Hamiltonian(23) and the chaoticity of the system,

the question how fast the transition between chaos and order ~ Model GOE Poisson
occurs, whether this transition is monotonic wighetc.—all DGOE 0 500
this is not investigated here. These questions have been dis-  ~gR 1 0
cussed in many other worksee Refs[16,17] and references LH 1 0
therein. Brody 1 0

An important feature of this system is the scaling between BR 0 1

orbits at different energies. By considering a trajectory
(p(1),q(t)) at energyE, it is possible to determine another
trajectory(pg(t),qo(t)) at energyE, by the scaling

The average behavior of the cumulative level density
N(E) could not be written in closed form due to analytical
difficulties related to the isotropy property of the Hamil-
tonian[19]. Nevertheless, it is knowf19] thatN(E) must be

where e = (E/Eq)** is the scaling factor between different proportional to the scaling factor up to second order, namely,
trajectories. The energk, is taken to be 0.5. This means

that the ground state energy is approximately equal to unity.

p(t)=eZ3po(e3), q(t)=ege(e), (24)

N(E)xE%¥2x g2, (25)
TABLE II. Results from the NND of the isotropic quartic oscillator. Under the heading “Class,” the symmetry class and the parameter
B appearing in the Hamiltonia(23) are listed. For the five descriptions DGOE, Caurier-Grammaticos-Raf@&H), Lenz-HaakegLH),
Brody, and Berry-RobnikBR), the parameters of the NND are given together with the associated efr@nd the normalizegt? of the
fit.

DGOE CGR LH Brody BR
Class a*tao, X y*o, X° N*o, X wto, X2 p*o, X2
AL, B=0.01 344019 (14) 035001 (50) 062014 (16) 083007 (1L2) 006003 (L.1)
AL, 8=0.2 931015 (3.7) 023001 (3.2) 028002 (24) 048003 (09) 022002 (15)
Al B=04  500.00:0.15 (3.7) 023001 (49) 026003 (62) 013002 (0.8) 052002 (0.5)
Al, =06  500.000.15 (3.9) 0.1%001 (45) 026003 (64) 018003 (13) 058002 (L1.0)
Al, 3=0.8 500.06:0.16 (4.2) 0.280.01 (5.5) 0.2%0.03 (6.0) 0.140.03 (1.1 0.540.02 (0.8)
Al, p=1.0 500.06:0.17 (5.4) 0.3*+0.01 (6.8) 0.250.03 (7.3) 0.16:0.03 (1.8) 0.640.02 (1.8)
B2, 3=0.01 3120008 (0.2) 035002 (48 076010 (0.5) 09%003 (0.2) 003001 (0.2)
B2, B=0.2 245%011 (2.4) 029001 (46) 0272002 (24) 035003 (1.9) 033004 (4.0)
B2, =04  500.000.15 (41) 024001 (6.3) 023002 (7.6) 004002 (12) 075001 (L2
B2, =06  500.00:0.14 (3.6) 026001 (55 024002 (64) 00%002 (11) 065002 (L1)
B2, B=0.8 500.06:0.16 (4.7) 0.220.01 (5.6) 0.240.03 (7.6) 0.030.02 (0.9) 0.720.01 (0.8)
B2, =10  500.00-0.14 (3.9) 016001 (25) 023002 (7.1) 00%002 (0.6) 086001 (0.6)
B1, B=0.01 3.05-0.12 (0.4) 0.380.02 (4.9) 0.7%0.11 (0.7) 0.960.05 (0.5 0.020.02 (0.5)
B1, B=0.2 24.09-0.08 (1.2) 0.280.02 (3.7) 0.250.01 (1.4) 0.460.03 (1.6) 0.260.04 (3.7)
B1, B=0.4 500.0@:0.15 (4.0) 0.16:0.01 (4.4) 0.25:0.03 (7.5) 0.030.02 (1.1) 0.7%20.02 (1.0)
B1, B=0.6 500.15-0.17 (5.5) 0.340.01 (8.0) 0.21%+0.02 (9.1) 0.0%0.01 (1.2) 0.81%+0.01 (1.3)
B1, p=0.8 500.17%0.17 (5.4) 0.340.01 (8.1) 0.25:0.03 (8.5) 2.21%+0.02 (1.1) 0.76:0.02 (1.1)
B1, B=1.0 500.0:0.14 (4.0) 0.130.01 (3.1) 0.230.02 (7.0) 0.00.02 (0.6) 0.880.01 (0.6)
A2, B=0.01 293024 (17) 034002 (64) 083023 (2.2) 099001 (1.3) 00001 (L3)
A2, =02 875:0.13 (25) 023001 (2.6) 029002 (16) 058002 (0.6) 016002 (L4)
A2, B=04  500.00:0.16 (41) 033001 (6.1) 025003 (65 012002 (1.0) 058002 (0.8)
A2, =06  500.00:0.14 (3.4) 017001 (42) 026003 (57) 014003 (L2) 052002 (0.9)
A2, 3=0.8 500.0a:0.14 (3.5) 0.230.01 (4.6) 0.26:0.03 (6.1) 0.160.02 (1.0) 0.66:0.02 (0.9)
A2, =10  500.00:0.16 (42) 02001 (3.9) 026003 (52) 013003 (L3) 052002 (L4)
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FIG. 1. (a—(f) present the histograms of the
NND’s for the B, symmetry class ang@=0.01,
0.20, 0.40, 0.60, 0.80, and 1.00. The curves are
the best fits from the DGOKEdasheg, Caurier,
Grammaticos, and Ramanidot-dashey] and
Lenz and Haake(dotted models. Full curves
show Poisson and GOE limiting cases.

P(S/<S>)

0.0 : L
()} 1 2 3

1.0F E{ 190} F

08N i osFilky .
’/-\\ : \\\ ] S ]
0] ,
y S KN
@
o N ] ]

) 1 2 "2 %% 1 2 3

S/<S> S/<S>
This result was used for the convergence analysis of the ethe lines defined bx+y=0 andx—y=0), B, (antisym-
genvalues obtained numerically. metric, symmetrig; B; (Ssymmetric, antisymmetrjc andA,
(antisymmetric, antisymmetnic
IV. ANALYSIS AND RESULTS The Hamiltonian was expanded in a convenient basis for

each symmetry class, and the eigenvalues were numerically

The Hamiltonian was rotated by/4 in order to minimize yetermineq for differenp values. The frequency of the os-

the classically forbidden region of phase space and improvgi"ator basis was chosen such as to minimize the trace of the
the convergence of the eigenvalugks]. The symmetry

classes of the system were also conveniently separated Mamlltolnlan dmattrlx fl;?m Eq(23) band |fm|_3rove tlhe conver-
order to simplify the identification of the level repulsion phe- 9€MNC€- IN Order 1o oblain a number of eigenvaiués meaning-
nomena. ful for the statistical analysis, matrices of dimension 3240 for

In this way, the eigenstates of the isotropic quartic oscil-{h€A1 andB, symmetry classes and of dimension 3160 for
lator can be classified according to the symmetry classes d#1 andA; were constructed. The convergence of the eigen-
the C,, symmetry group. The irreducible representations ofvalues was tested using relati¢25) and requiring that the
the group split into four one-dimensional representations andifferenceN(E) —N(E) must be very small.
one two-dimensional representati@oubly degeneratedin Since Eq.(25) is only an approximation taN(E), the
this work we restricted ourselves to the four one-dimensionatonvergence test was done in a recursive (g procedure
representations, usually labeled As (symmetric under re- is based on the arguments presented on Réf). In a first
flections on thex andy axes, symmetric under reflections on step, the eigenvalues were rescaled as
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1.0f l Al 1o ' B:

P(S/<S>)

FIG. 2. The same as in Fig. 1, but for the
DGOE (dashed, Brody (dotted, and Berry and
Robnik (dotted-dasheddescriptions.
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E32_ g2, (26) more careful analysis of the convergence of the numerically
obtained eigenvalues and to increase our confidence in the
results.
andN(E) was written as a function of2. The mean stair- In this way, 500 converged eigenvalues were obtained for

case function was then supposed to be described by the exge+0.01, and 1500 fog=0.20, 0.40, 0.60, 0.80, and 1.00 for
version of Eq.(25). The differences betweeN(E) and the A; andB, symmetry classes; and 450 f8=0.01, and
N(E) would then be caused by those eigenvalues with bad400 for 3=0.20, 0.40, 0.60, 0.80, and 1.00 By andA,.
convergence. At the end of this first step there were 2100he degree of the polynomials considered for the unfolding
converged eigenvalues f@#=0.01, and 2300 foB=0.20, were 1, 2, or 3, according to the symmetry class gnalue.
0.40, 0.60, 0.80, and 1.00 for th&; and B, symmetry The NND'’s obtained from the unfolded converged eigen-
classes; and 1800 fg8=0.01, and 2100 fo3=0.20, 0.40, values were then analyzed using the five formulas described
0.60, 0.80, and 1.00 fdB; andA,. above and normalizeg® values were calculated for the fit-
Using just these “converged” eigenvalues, the calcula-tings in the usual way. Possible effects on thgdevalues
tions were repeated looking for the best fitted polynomial fordue to a smaller number of eigenvalues were also investi-
N(&?). Since the mean staircase function is written in termsgated. In this case, cutting some hundreds of the higher or
of €2, the degree of this polynomial could not be muchlower eigenvalues of the spectra showed no other effects
larger than unity if the higher order terms in Eg5) were of  than the statistical fluctuations related to the different amount
lower relevance. In this case, higher degrees for this polynoef data.
mial must be related to eigenvalues with bad convergence, The limiting parameter values used in the numerical
which must be eliminated from the spectra for the analysiscalculations—those for which the five distributions repro-
All these steps were considered just in order to provide auce the Wigner and Poisson cases—are displayed in Table
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FIG. 3. Dyson-Mehta statistic for thB, symmetry class and
£=0.01, 0.20, 0.40, 0.60, 0.80, and 1.00. The best fits from the
Berry-Robnik expressiofiL0) (dashegland the ansat21) (varying
full curve) are given. The uppermost and the lowermost full curves
correspond to the limiting cases of Poisson and GOE statisticd]
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respectively.

I. The five numerically adjusted parameters for egchalue
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FIG. 5. Adjustedq parameters for ansat21) (open circle and
the Berry-Robnik expressiofi0) (full square for theA,, B, B,
andA, symmetry classes.

1(A)-1(F) and ZA)-2(F) (the results for the other three
symmetry classes are similar

The rich structure seen in the phase space analysis of the
transition between chaos and order of the quartic oscillator is
ot observed herf20]. A possible explanation may be that
the quantum calculation hides, due to the linear nature of the
Schralinger equation, the classical phase space structure.
Additionally, we would like to point out that statistical data

for each symmetry class are presented in Table Il. Thdased analyses are not in a position to show all the details

curves and histograms for the NND’s for all analyzgd
values for theB, symmetry class are displayed in Figs.
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FIG. 4. The same as in Fig. 3, but f8=0.20, 0.24, 0.28, 0.32,

0.36, and 0.40.

6 8 10L12 14 16 18 20 22

present in the transition between order and chaos. Rather,
after an appropriate rescaling of variables, the random matrix
theory would be able to describe some universal statistical
properties shared by a large class of Hamiltoni1id.

The results obtained with expressi@0) and ansat£21)
for A;(L) are shown in Figs. 3 and 4. The parameters of
these two distributions were both calledin order to sim-
plify the notation: in both cases, the Poissonian limit corre-
sponds toq=0 and 1 is the Wigner distribution. The Berry-
Robnik parameter is once more a measure of the chaotic
fraction of phase space. Figure 5 displays the adjusted
parameters for Eq$10) and(21) as a function of the8 value
of the oscillator[Eq. (23)] for the four analyzed symmetry
classes.

The first point worth mentioning is the apparent absence
of level repulsion for intermediatg values in the histograms
of Figs. 1 and 2. This is a consequence of the relatively small
number of eigenvalues considered due to computational con-
straints.

In Figs. 3 and 4A3(L) shows that short and long range
correlations undergo a transition between chaos and order for
increasingB values with different speeds: the most regular
situation is achieved much faster by short range correlations
than by long range correlations. This result is an interesting
aspect of the transition between chaos and order of the quar-
tic oscillator that we are not able to explain.

According to the NND’s, we note the good agreement
between the results of all five descriptions concerning the
chaoticity of the system: with increasing the quantized
quartic oscillator becomes more and more regular, as ex-
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pected. Nevertheless, it is interesting to see that the mosgkhly due to theA?Oi(L) term [Eq. (11)], which is the same

regular value of the CGR, LH, and BR parameters are nevefor Egs.(10) and(21) and seems to dominate the behavior of

achieved even if the system is completely regul# ( poth curves. Also, the results from Fig. 5 show a peculiar

=1.0). In the DGOE case, the Poissonian curve is obtainegb|ation between the adjustexh(L) parameters and thg

when a—. Here, the maximum parameter value obtainedyalues[Eq. (23)]. Such behavior is related to the different

is already a good result, as shown by jfevalues displayed chaos-order transition speeds for the short and long range

in Table II. correlations between eigenvalues, as already mentioned
The most Poissonian case of the DGOE model displays above.

kind of “shoulder” for small s/(s) values. This can be

explained by a simple physical argument: as soon as the V. FINAL REMARKS

level repulsion is introduced in the system, degeneracies are i i )
lited, causing a small increase in the probability for very !N this work, five formulas proposed to describe systems

small spacings between levels. This fact together wit" the transition region between chaos and order were com-
the normalization constraint of the distribution causes thé°@red, namely, the Brody ansatz, the Berry-Robnik model,
shoulder in the DGOE curve for nearly Poissonian parametéf€ Caurier-Grammaticos-Ramani model, the Lenz-Haake
values[22]. Unfortunately, this and other aspects of theModel, and the DGOE model. In order to do this, the five
NND’s for small spacings can only be observed in histo-Proposed NND's were applied to the spectra of the isotropic

grams obtained from a higher amount of data, not availabluartic oscillator. _
here. The long range counterpart of the level correlations were
Note the saturation of the adjusted DGOE parameter: ai@nalyzed in terms of the Dyson-Mehta statislig. Here an
ready for3=0.4, the maximum parameter value is obtained.xpression usually associated with the Berry-Robnik formal-
This is probably related to the absence of level repulsion idSm was applied. A simple expression for the statistic
the intermediate situation between maximum chaos anWhich interpolates between the Poissonian and GOE limits
maximum regularity—seen in the histograms of NND—dueWas also considered. The results show that the short and long
to the relative small number of eigenvalues considered, akNge correlations undergo a transition between chaos and
already pointed out. It is also possible to see a saturation foprder for increasings value of the quartic oscillatofEg.

the LH parameter fo3=0.4 and this behavior shows up in (23] with different speeds. _
all other three symmetry classes. In all cases, the NND of the DGOE provided a good

By inspection of Fig. {A), it is possible to see problems description for the level fluctuations of the spectra. The com-
in the CGR description of data: the adjusted curve lies faParison of the models teaches us that the DGOE model has

below the histogram, what is also represented in Table Il bypdvantages over the othefs: it provides as good a descrip-
the x values for8=0.01. In fact, it hardly provides a good 10N for the NND as any one of the other four formulas; and
description in all cases except that®% 1.0 (strongly Pois- (i) it provides an analytical expression for the probability

sonian situation This is probably due to the strong approxi- distribution of th?N_X N matrix .ensemble, .WhiCh allows the
mations introduced by the authors of RES] in the deriva- study of the statistical fluctuation properties of the elements
tion of Eq. (6) of the eigenvector¢as already done in Ref15]), and also

According to they? values, the LH distribution has prob- opens a new possibility of investigation of the long range
correlations among levels.

lems describing the data with increasing regularity of the
system. The difficulties with the numerical fitting increase as
A—0, i.e., the Poissonian limjtsee Eq.(8)], and were al-
ready noted by another groyip3]. Here we tested different  The authors would like to thank the LCCA/CCE-USP
numerical methods to calculate the special functions and rqSz Paulo, SP, Bragj) for the use of its facilities. One of us
lated integrals in Eq8) and used those which gave the most(C. I. B.) wishes to thank H. L. Harney for helpful criticisms
stable resultsubroutinescAULEG and TRAPZD from Ref.  concerning this manuscript. The research was supported in
[24). part by CNPg(Conselho Nacional de Desenvolvimento Ci-
The x° results displayed in Table Il show smaller valuesentfico e Tecnolgico, Brazi), and FAPESRFunda@o de
for the Brody distribution, the BR case, and the DGOE.  Amparo aPesquisa do Estado dé ®®aulo, Brazil. The
Concerning the Dyson-Mehta statistic displayed in Figs. 3vork of C. I. Barbosa was supported in part by CAPES
and 4, it is interesting to note the good agreement betweefCoordenaao de Aperfejoamento do Pessoal de Ensino Su-
the two descriptions tested: in almost all cases it is evemperior, Brazi), FAPESP, and Fritz ThyssenStifturier-
difficult to distinguish between the two curves. This is prob-may).
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